Amino Acid Overproduction by Analog Resistant Mutants of the Nitrogen Fixing Cyanobacterium Anabaena sp 287

SELWIN P. THOMAS* AND S. SHANMUGASUNDARAM

Department of Microbiology and Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India

Received March 9, 1992; Accepted August 14, 1992

ABSTRACT

Two amino acid analog resistant mutants of the cyanobacterium Anabaena sp 287 were isolated after MNNG mutagenesis. Anabaena ST 16, a mutant resistant to the alanine analog D- α -aminobutyric acid and Anabaena ST 25, another mutant resistant to the histidine analog 1,2,4-triazole-3-alanine, released alanine and histidine, respectively, into the medium upon immobilization in alginic acid during diazotrophic growth in fluidized bed reactors. The rates of amino acid production by the mutants were 4.3 μ mol mg chl⁻¹ h⁻¹ of D-alanine by Anabaena ST 16 and 16.6 µmol mg chl-1 h-1 of L-histidine by Anabaena ST 25. Nitrogen fixation by the mutants was not affected by the extracellular amino acid concentration. While the radioactive carbon flow was followed, the parent strain retained 93% of fixed ¹⁴C and released only 7% into the medium. On the other hand, Anabaena ST 16 released 13% and Anabaena ST 25 released 29% into the medium. These mutants are beneficial in the production of radioactive amino acids using diazotrophic photobiotechnology.

Index Entries: Cyanobacteria; nitrogen fixation; analog resistance; immobilization; amino acid secretion; radioactive carbon flow; photobiotechnology.

*Author to whom all correspondence and reprint requests should be addressed at present address: Department of Biology, Life Sciences Building, Memphis State University, Memphis, TN 38152

INTRODUCTION

Photosynthetic cyanobacteria, which fix atmospheric nitrogen, produce many nitrogenous exometabolites from air, water, and sunlight (1). Among them, ammonium and amino acids have considerable agronomical and industrial significance. The photoproduction of ammonium and amino acids without induction has been shown in many nitrogen fixing cyanobacteria (2-4) and the continuous and discontinuous secretion of these products is monitored by immobilization of cells or induced by inhibitors of the nitrogen metabolic pathway (5). This has led to the development of a technology involving different strains of cyanobacteria improved for the overproduction and excretion of ammonium (6,7) and amino acids (8,9) using diazotrophic growth. Overproduction of metabolites can be induced by the selection of mutants that are resistant to analogs of that metabolite (10). Deregulation of amino acid biosynthetic pathway owing to analog resistance led to the release of amino acids such as tryptophan, phenyl alanine, methionine, and arginine by strains of Anabaena sp 29151, Synechocystis sp 29108, Synechococcus sp AN TX20 and Synechococcus sp 602 (11). Similar amino acid analog resistant mutants of Spirulina platensis (12), Anabaena variabilis (9), and Synechococcus PCC 7942 (13) overproduced proline, aromatic amino acids, and arginine and citruline, respectively. We report here the amino acid overproduction by two analog resistant mutants of the cyanobacterium Anabaena sp 287 and the flow of carbon and nitrogen fixation under amino excreting conditions.

MATERIALS AND METHODS

Cyanobacterium and Culture Conditions

Anabaena sp 287 was obtained from the Division of Microbiology, IARI, New Delhi, India. Cultures were grown and maintained in BG11 medium at 25 °C with or without combined nitrogen (14). Other growth conditions were as reported previously (15).

Immobilization of *Anabaena* Filaments

One liter of cyanobacterial culture was centrifuged at 6000g for 10 min and washed with BG11 medium devoid of phosphate. The pellet was suspended in the same medium and the suspension was mixed with equal volume of 3% sodium alginate solution and added dropwise into 100 mM calcium chloride using a sterile capillary tube. The biocatalyst containing beads were then loaded in fluidized bed 500 mL-continuous culture reactors to collect the amino acids released into the medium with a dilution rate of $0.2\ h^{-1}$.

Isolation of Amino Acid Analog Resistant Mutants

Short filaments (5–10 cells/filament) of *Anabaena* sp 287 were treated with 250 μ g mL⁻¹ of MNNG in citrate buffer pH 5.5 for 30 min. After the mutagenic treatment they were washed with phosphate buffer pH 7.0 and suspended in BG11 medium with 2 mM NH₄Cl and allowed to grow for 10 h in a rotary shaker (100 rpm). The mutated filaments were spread on wet cellulose nitrate filters and placed on amino acid analog containing BG11 medium devoid of combined nitrogen. The alanine analog D- α aminobuytric acid and the histidine analog 1,2,4-triazole-3-alanine were used at the concentration of 250 μM mL⁻¹. Green colonies appearing after 10 d were transferred to liquid and solid media containing the respective amino acid analogs. Several resistant clones were selected and the total amino acid levels were determined in the culture filtrates as described below. Mutant strains Anabaena ST 16 and Anabaena ST 25, which released alanine and histidine in higher quantities, respectively, were selected based on the HPLC quantification of amino acids for further studies.

Analytical Procedures

Chlorophyll a was determined in methanol extracts (16). Protein was determined using Coomassie blue dye binding method (17). Shimadzu Graphicard UV-Visible Spectrophotometer was used for optical density measurements. Total nitrogen of the filaments and culture filtrates was determined as described earlier (14).

Determination of Nitrogenase Activity

Nitrogenase activities were estimated by acetylene reduction assay (18). Immobilized cyanobacteria were washed with BG11 medium devoid of combined nitrogen and were added to 35 mL of medium in 130 mL-Wheaton bottles. The bottles were sealed with a flanged rubber septum and were placed on a rotary shaker (100 rpm) and illuminated with a quantum flux 75 μ einsteins m⁻¹ s⁻¹. Ethylene was resolved in a Hewlett Packard 5830A gas chromatograph using a stainless steel Porapack N column at 110 °C as FID temperature. Nitrogenase activities are expressed as nanomoles of C₂H₄ produced/mg protein/h.

Determination of Oxygen Evolution and Consumption

The oxygen evolution and consumption by cyanobacterial filaments was followed polarographically under saturating light using a YSI 4004 Clark Oxygen Electrode. The signal from the electrode was recorded on a

Hitachi Model 200 strip chart recorder. The results are the average of triplicate experiments and expressed in μ mol oxygen evolved/consumed/mg chlorophyll/h.

Amino Acid Quantification

Total amino acids were quantified in spent cultures of all analog resistant mutants with ninhydrin reagent (19). Among them one mutant resistant to each analog that produced the highest amount was chosen for further study. They were designated as *Anabaena* ST 16 for D- α aminobutyric acid resistance and *Anabaena* ST 25 for 1,2,4-triazole-3-alanine resistance. Comparative quantification of D-alanine and L-histidine was carried out by using Hitachi 655 HPLC components. Standard amino acid separations were made using Sigma amino acids. *O*-Pthaldialdehyde derived amino acids were separated by isocratic elution at the flow of 1 mL min⁻¹ using 20 mM phosphate buffer pH 6.8 and methanol in the ratio of 64:36 at room temperature.

Estimation of ¹⁴C— Carbon Flow and Protein Synthesis

¹⁴C-Sodium bicarbonate was used for the determination of the flow of carbon through Anabaena sp 287 and its two amino acid overproducing mutants as described previously (14). Cultures of the three stains were allowed to grow for ten days (early log phase) and 300 KBq of radioactive sodium bicarbonate was added and the strains were allowed to grow for another 5 d to attain mid-log phase. The culture filtrates were collected after 5 d and dried in a water bath at 60°C. The pellets were also dried at 60°C and then hydrolyzed with 10% tri-chloro acetic acid and this fraction was saved. The pellet obtained after acid hydrolysis was then treated with 1M NaOH for hydrolysis at 80°C for 30 min in a water bath. Similar acid and alkali hydrolysis were done for the dried culture filtrates. Among the fractions the acid soluble fraction of the culture filtrates which constitutes the amino acids was passed through Dowex-50 in a column of 30×1.5 cm. The absorbed amino acids from this column were eluted with 1M ammonia solution and finally concentrated to 1 mL. The total amino acids were separated by two-dimensional paper chromatography (20). The corresponding alanine and histidine spots were identified by a ninhydrin spray. ¹⁴CO₂ fixation was determined in terms of H¹⁴CO₃- incorporation (14). After 1 h incorporation the cyanobacterial filaments were washed with BG11 medium containing nonradioactive sodium bicarbonate to remove the unincorporated H14CO3-. Protein synthesis was determined in terms of ¹⁴C-chlorella hydrolysate incorporation (21). After 6 h incorporation, the cyanobacterial filaments were washed with BG11 medium containing nonradioactaive chlorella hydrolysate to remove the unincorporated ¹⁴C-chlorella hydrolysate. Radioactive counts were monitored in a Minaxi B-TriCarb 4000 series Liquid Scintillation Counter

using 5 mL of scintillation cocktail provided by the counter manufacturers. Values presented in Table 2 are the mean value of six experiments or cultures, whichever applicable to the context.

Chemicals

Standard amino acids, amino acid analogs, and MNNG (*N*-methyl-*N'*-nitro-*N*-nitrosoguanidine) were purchased from Sigma Chemical Co., USA, and other chemicals were acquired from E. Merck AG, Germany. Sodium alginate was the product of Aldrich Chemical Co., USA. Radioactive isotopes were purchased from Bhabha Atomic Research Center, Trombay, Bombay, India.

RESULTS

Isolation of Amino Acid Secreting Mutants

Mutant strains of Anabaena sp 287 resistant to 250 μ M mL⁻¹ of D- α aminobutyric acid and 1,2,4-triazole-3-alanine were isolated. In order to obtain mutants having regulatory mutation in the biosynthetic pathway allowing enhanced production of alanine or histidine and to eliminate the mutants arising because of the lack of analog uptake or nontoxic metabolism of the analog, the mutants were screened for the extracellular amino acid levels. Among them Anabaena ST 16 and Anabaena ST 25 produced higher levels of alanine and histidine, respectively, because of their resistance to the amino acid analogs, caused by deregulation in the amino acid biosynthetic pathway.

Amino Acid Secretion and Nitrogen Fixation

Table 1 shows the time course release of alanine and histidine by the mutants *Anabaena* ST 16 and *Anabaena* ST 25, respectively. The parent strain grown under similar conditions did not liberate amino acids into the medium. However, the mutant strains did not exhibit higher nitrogenase activity when compared to the parent (Table 1). On the other hand the mutants exhibited similar growth rate as the parent (data not shown).

Photosynthesis, Respiration, and Protein Synthesis by Anabaena Strains

Table 2 shows the comparison of the photosynthetic and respiratory functions of the parent and amino acid overproducing mutants. Photosynthesis and respiration as determined by oxygen evolution and consumption was neither enhanced nor reduced in the mutant strains. However, the mutants showed enhancement in ¹⁴CO₂ fixation (Table 1).

	Anabaena sp 287			Anabaena ST 16			Anabaena ST 25		
Time, h	1*	2	3*	1*	. 2	3*	1*	2	3*
0	_	148.3±7.1	273.50	0.0	153.4±8.8	322.51	0.0	150.5±3.4	315.12
12	_	148.3 ± 6.0	276.15	4.3	154.3 ± 2.6	310.11	16.1	151.1 ± 6.1	311.44
24	_	147.1 ± 5.0	272.11	4.0	153.4 ± 8.5	318.55	16.0	152.3 ± 5.6	315.15
36	_	147.1 ± 5.0	273.46	4.1	150.1 ± 5.5	320.31	16.6	154.3 ± 6.0	311.50
48	_	146.9 ± 8.0	269.43	4.3	151.2 ± 6.0	322.55	16.6	151.2 ± 8.5	314.65
72	_	148.3 ± 6.0	270.17	3.9	154.4 ± 3.6	314.41	16.1	152.1 ± 4.1	315.12
96	_	148.3 ± 7.4	272.08	4.2	153.4 ± 6.1	322.51	16.4	153.9 ± 6.3	313.55
120	_	147.9 ± 6.5	274.73	4.0	152.1 ± 4.1	320.58	16.6	151.1 ± 5.0	315.12

Table 1
Time Course Release of Alanine and Histidine by Immobilized
Anabaena ST 16 and Anabaena ST 25, Respectively^a

- 1. Rate of amino acid (alanine or histidine) production (μ mol mg chl⁻¹ h⁻¹).
- 2. Nitrogenase activity (nmol mg protein $^{-1}$ h $^{-1}$).
- 3. $^{14}CO_2$ fixation (μ mol fixed mg chl $^{-1}$ h $^{-1}$).

* Values are the average of six determinations.

The enhancement was significantly higher (12–17%) in *Anabaena* ST 16 and *Anabaena* ST 25 when compared to the parent *Anabaena* sp 287. Protein synthesis by *Anabaena* ST 25 was found to be lower than the other two strains (Table 2).

Flow of Radioactive Carbon Through Anabaena Strains

When the radioactive carbon flow through *Anabaena* sp 287 and its mutant strains was determined during growth, the mutant strains exhibited enhanced incorporation of NaH¹⁴CO₃ in the cultures. The levels were 18 and 15% higher in *Anabaena* ST 16 and *Anabaena* ST 25 respectively when compared to *Anabaena* sp 287 (Table 2). Similarly, the ¹⁴C-compounds released into the medium were higher in the mutant strains. When compared to the parent (7%), *Anabaena* ST 16 excreted 13% and *Anabaena* ST 25 released 29% of the total ¹⁴C-fixed in the cultures. However, *Anabaena* ST 16 retained higher amount of ¹⁴C-fixed inside the cells (105%) than the parent (93%) and *Anabaena* ST 25 (86%).

Extracellular 14C-Amino Acid Levels

Amino acid fractions were obtained through Dowex chromatography from the total ¹⁴C-extracellular compounds released by the parent and the mutant strains. When compared to the parent, *Anabaena* ST 16 and *Anabaena* ST 25 released three and eight times higher amount of amino acids, respectively (Table 2). However, in the case of ¹⁴C-total extracellular compounds, these strains produced twice and four times higher amounts,

⁽⁻⁾ Not detectable.

^a Nitrogenase activity and ¹⁴CO₂-fixation in comparison with the parent, Anabaena sp 287.

Table 2

Photosynthetic Oxygen Evolution, Respiratory Oxygen Consumption, Protein Synthesis, and the Flow of Badicactine Carbon in Australia en 287 and the Amino Acid Evocatine Mutante

		ā				,			
μmol O ₂ mg ⁻¹ chl h ⁻¹	4C-Chlorella hydrolysate incorporation		¹⁴ C-Carbon ¹⁴ C-Carbon (retained) (released)	14C-Carbon (released)	Total extracellular	Extracellular amino acids	ellular acids	14C-alanine	14C-histidine
Evolved Consumed	(×10* dpm mg ⁻¹ chl min ⁻¹)	4C-Carbon (fixed)	(×10° dpr chl mi	n mg ⁻¹ n ⁻¹)	14C-amino acids	Percent of total	Percent of total	gm mdp)	chl min -1)
125	1.15	52.0 (100)	48.3 (93)	3.7 (7)	0.93	1.78	22	0.08×10*	0.17×10
120	1.07	61.8 (118)	54.6 (105)	6.7 (13)	2.55	4.13	88	0.86×10 ⁵	0.17×10*
123	0.88	60.0 (115)	45.0 (86)	15.0 (29)	7.95	13.25	53	0.38×10 ⁴	2.18×10 ⁵
	h1 sumed 125 120 123	(×10* dpm mg ⁻¹ chl min ⁻¹) 1.15 1.07	(×10° dpm mg ⁻¹ 1 chl min ⁻¹) 1.15 1.07	incorporation (×10° dpm mg ⁻¹ "4C-Carbon chl min ⁻¹) (fixed) 1.15 52.0 (100) 1.07 61.8 (118) 0.88 60.0 (115)	incorporation (×10° dpm mg ⁻¹ "4C-Carbon chl min ⁻¹) (fixed) 1.15 52.0 (100) 1.07 61.8 (118) 0.88 60.0 (115)	incorporation (retained) (released) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (x10° dpm mg ⁻	incorporation (retained) (released) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (x10° dpm mg ⁻	incorporation (retained) (released) (released) (released) (released) (released) (released) (released) (x10* dpm mg ⁻¹ (fixed) (x10* dpm mg ⁻¹) (x10* dramino Percent of total lanin ⁻¹) (x10* dramino Percent of total lanin ⁻¹) (x10* dpm mg ⁻¹) (x10* dramino Percent of total lanin ⁻¹) (x10* dpm mg ⁻¹ (x10* dpm mg	incorporation (retained) (released) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (fixed) (x10° dpm mg ⁻¹ (x10° dpm mg ⁻

Values in parentheses indicate the percentage.

Table 3
Fate of Fixed Nitrogen (Total Nitrogen g⁻¹ Dry Wt)
During Growth of *Anabaena* sp 287 and Its Mutant Strains

Strain	Cellular nitrogen	Extracellular nitrogen	Culture nitrogen status
Anabaena sp 287	3.83 ± 0.03	$0.25 \pm 0.04 \ (6.08)$	4.11 ± 0.04
Anabaena ŜT 16	4.24 ± 0.06	$0.32 \pm 0.01 (7.10)$	4.56 ± 0.07
Anabaena ST 25	4.00 ± 0.01	$0.66 \pm 0.46 \ (14.16)$	4.66 ± 0.47

Values in parentheses indicate the percentage of extracellular nitrogen in the total culture nitrogen.

respectively, when compared to the parent. Anabaena sp 287 released only 1.78% of the total ¹⁴C-fixed by the culture. On the other hand Anabaena ST 16 and Anabaena ST 25 released 4.13 and 13.25% of the total ¹⁴C-fixed by the cultures. The ¹⁴C-amino acids secreted into the medium were 25% in the case of the parent and 38 and 53% by the mutants Anabaena ST 16 and Anabaena ST 25, respectively. Though 25% was constituted by amino acids in the total ¹⁴C-compounds secreted by Anabaena sp 287, none of the amino acid peaks were detectable during HPLC separation of the culture filtrates. Probably, many amino acids were secreted by the parent in insignificant quantities. When the ¹⁴C-total amino acids were separated, Anabaena ST 16 and Anabaena ST 25 recorded higher amounts of ¹⁴C-alanine and ¹⁴C-histidine respectively when compared to the parent strain (Table 2).

Fate of Fixed Nitrogen

Table 3 shows the culture nitrogen status in *Anabaena* sp 287 and its mutants *Anabaena* ST 16 and *Anabaena* ST 25 during diazotrophic growth. *Anabaena* sp 287 released 6.08% of the nitrogen fixed into the medium. On the other hand *Anabaena* ST 25 released 14.16%, which correlated with its higher release of ¹⁴C-total compounds into the medium (Table 2). *Anabaena* ST 16 recorded 7.10% of the total nitrogen fixed, slightly higher than the parent as observed in the ¹⁴C-total compounds released into the medium.

DISCUSSION

Excretion of a variety of organic compounds by cyanobacteria during different stages of growth has been reported (22-28). However, importance had all along been placed on nitrogenous compounds and attempts had been made to quantify them (3,4,29). Since the native strains of cyanobacteria release only small quantities of nitrogenous compounds, mutants overproducing those compounds have been isolated (6,8,18).

Such mutants are useful to study the biochemical mechanisms involved in the deregulation of amino acid biosynthetic pathways. In addition, they are of much biotechnological importance in producing nitrogenous substances using solar energy, water, and atmospheric air, and this process is less expensive than the chemical processes that are used to synthesize these nitrogenous compounds.

The amino acid overproducing mutants of Anabaena sp 287 isolated in this study were obtained after MNNG mutagenesis. Mutant strains Anabaena ST 16 and Anabaena ST 25 released alanine and histidine, respectively, into the medium upon immobilization in alginic acid, though they lack higher nitrogenase activities when compared to the parent strain (Table 1). A naturally occurring amino acid-secreting cyanobacterium A. siamensis produced a wide range of amino acids (3). However, the quantities of individual amino acids released by that strain were lower than the amounts released by the mutants of Anabaena sp 287 described here and the mutants of A. variabilis (6). Though photosynthetic and respiratory activities were similar to the parent, Anabaena ST 25 exhibited reduction in the rate of protein synthesis. Such impaired protein synthesis accounted for its more release of amino acids into the medium when compared to the other two strains. The flow of carbon through the three strains traced by labeled carbon demonstrated the higher release of ¹⁴C-exometabolites by the two mutant strains (Table 2). Nearly half of the fraction of ¹⁴C-exometabolites was constituted by amino acids in the mutant strains when compared to the parent (Table 2). As a photobiotechnological application Anabaena ST 16 and Anabaena ST 25 released more amino acids from the fixed carbon (4.13 and 13.25%, respectively) and more nitrogenous substances from the fixed nitrogen (7.10 and 14.16%, respectively) when compared to the release by Anabaena sp 287 (1.78% of fixed carbon and 6.08% of fixed nitrogen). The release of ¹⁴C-labeled individual amino acids, alanine, and histidine by Anabaena ST 16 and Anabaena ST 25, respectively, in higher quantities also confirmed the results obtained from HPLC quantification of the amino acids (Tables 1 and 2).

Toxic effects of amino acid analogs can be overcome by overproduction of the parental amino acid due to the deregulation in the amino acid biosynthetic pathway (10). It is well known that 1,2,4-triazole-3-alanine resistant mutants of bacteria are unable to repress histidine operon functions (30). Mutant strains of *Methanococcus voltae* resistant to 1,2,4-triazole-3-alanine were able to excrete histidine, proline, phenyl alanine, and tyrosine in various combinations (31). 1,2,4-triazole-3-alanine has been shown to be incorporated into protein and to cause repression of the histidine operon by mimicking the regulatory effect of histidine on enzyme production (32). Eventually, the deregulation of histidine biosynthetic pathway caused by altered enzyme(s) led to the release of the parent amino acid in a higher level. Similar amino acid analog resistant mutants of several strains of *Synechococcus* sp (13,21,33,34,36–38), *Synechocystis* (8),

and Anabaena (9,35) were found to overproduce parental amino acids due to the deregulation of the enzymes. Sustained photoproduction of a wide spectrum of amino acids by 6-fluorotryptophan resistant mutants of A. variabilis was also reported in immobilized systems, alanine being the major component and isoleucine, leucine, glycine, and phenyl alanine in significant quantities (8). Based on the ¹⁴C-total amino acid release by the two amino acid analog resistant mutants of Anabaena sp 287, apart from the secretion of alanine or histidine being the major component, they also secreted other amino acids in significant quantities as reported in other strains of cyanobacteria. This might be owing to the deregulation of the respective amino acid biosynthetic pathway in Anabaena ST 16 and Anabaena ST 25. However, further studies on the enzymes of the alanine and histidine biosynthetic pathways in the mutant strains will throw light on the type of mutations occurring in Anabaena ST 16 and Anabaena ST 25. Since significant portions of the total ¹⁴C released compounds were constituted by ¹⁴C-amino acids, these mutants will be useful for the production of isotopically labeled amino acids using photodiazotrophic-technology.

ACKNOWLEDGMENTS

We thank Council of Scientific and Industrial Research and Indian Council of Agricultural Research, New Delhi, India for financial assistance.

REFERENCES

- 1. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stainer, R. Y. (1979), J. Gen. Microbiol. 11, 1-61.
- 2. Watanabe, A. (1951), Arch. Biochem. Biophys. 34, 50-55.
- 3. Antarikanonda, P. (1984), Curr. Microbiol. 11, 191-196.
- 4. Subramanian, G. and Shanmugasundaram, S. (1986), FEMS Microbiol. Lett. 37, 151-154.
- 5. Brouers, M. and Hall, D. O. (1986), J. Biotechnol. 3, 307-321.
- 6. Kerby, N. W., Musgrave, S. C., Rowell, P., Shestakov, S. V., and Stewart, W. D. P. (1986), Appl. Microbiol. Biotechnol. 24, 42-46.
- 7. Thomas, S. P., Zaritsky, A., and Boussiba, S. (1990), Appl. Environ. Microbiol. 56, 3499-3504.
- 8. Kerby, N. W., Niven, G. W., Rowell, P., and Stewart, W. D. P. (1987), Appl. *Microbiol. Biotechnol.* **25**, 547–552.
- 9. Karpova, O. V., Postnova, T. I., Romanova, N. I., Salyakh, I. O., and Gusev, M. V. (1990), *Appl. Biochem. Microbiol.* **26**, 784–788.
- 10. Yamada, K., Kinoshita, S., Tsunoda, T., and Aida, K. (1972), The Microbial Production of Amino acids. (Kodansha International Ltd, Tokyo)
- 11. Hall, G., Flick, M. B., and Jensen, R. A. (1980), J. Bacteriol. 143, 981–988.
- 12. Riccardi, G., Silvio, S., and Cifferri, O. (1981), J. Bacteriol. 147, 1002-1007.

- 13. Wolters, M. A., Bodnar, M. E., Stern, M. D., and Bingham, S. E. (1991), Appl. Microbiol. Biotechnol. 35, 56-59.
- 14. Thomas, S. P. and Shanmugasundaram, S. (1991), Biochem. Internatl. 23, 93-102.
- 15. Thomas, S. P. and Shanmugasundaram, S. (1986), Microbios Lett. 33, 115-120.
- 16. Mackinney, G. (1941), J. Biol. Chem. 140, 315-322.
- 17. Bradford, M. M. (1976), Anal. Biochem. 72, 248-254.
- 18. Thomas, S. P., Zaritsky, A., and Boussiba, S. (1991), Bioresource Technol. 38, 161-166.
- 19. Rosen, H. (1957), Arch. Biochem. Biophys. 67, 10-15.
- 20. Bassham, J. A. and Taylor, S. E. (1988), Meth. Enzymol. 167, 539-551.
- 21. Labarre, J., Thuriaux, P., and Chauvat, F. (1987), J. Bacteriol. 169, 4668-4673.
- 22. Matsunaga, T., Takeyama, H., Sudo, H., Oyama, N., Ariura, S., Takano, H., Hirano, M., Burgess, J. G., Sode, K., and Nakamura, N. (1991), Appl. Biochem. Biotechnol. 28/29, 157-167.
- 23. Taha, E. E. M. and Elrefai, A. E. M. K. (1962), Arch. Microbiol. 41, 307-317.
- 24. Stewart, W. D. P. (1963), Nature 200, 1020.
- 25. Venkataraman, G. S. and Saxena, H. K. (1963), Ind. J. Agri. Sci. 33, 21-23.
- 26. Whitton, B. A. (1965), J. Gen. Microbiol. 40, 1-11.
- 27. Hood, W., Leaver, A. G., and Carr, N. G. (1969), Biochem. J. 114, 12-13.
- 28. Bednark, T. and Cierniak, J. (1979), Acta. Hydrobiol. 21, 219-230.
- 29. Matsunaga, T., Nakamura, N., Tsuzaki, N., and Takeda, H. (1988), Appl. Microbiol. Biotechnol. 28, 373-376.
- 30. Roth, J. R., Anton, D. N., and Hartman, P. E. (1966), J. Mol. Biol. 22, 305-323.
- 31. Sment, K. A. and Konisky, J. (1989), Appl. Environ. Microbiol. 55, 1295-1297.
- 32. Levin, A. P. and Hartman, P. E. (1963), J. Bacteriol. 66, 820-828.
- 33. Hall, G. C. and Jensen, R. A. (1980), J. Bacteriol. 144, 1034-1042.
- 34. Labarre, J., Donie, P., and Crouzel, C. (1991), Appl. Radiat. Isot. 42, 659-663.
- 35. Niven, G. W., Kerby, N. W., Rowell, P., and Stewart, W. D. P. (1988), Arch. *Microbiol.* **150**, 272–277.
- 36. Hall, G. C., Flick, M. B., and Jensen, R. A. (1980), J. Bacteriol. 143, 981-988.
- 37. Hall, G. C., Flick, M. B., and Jensen, R. A. (1980), J. Bacteriol. 153, 423-428.
- 38. Phares, W. and Chapman, L. F. (1975), J. Bacteriol. 122, 943-948.